PSIET, KARANDA, DHENKANAL

LESSON PLAN Session(2022-2023)

Discipline:	Semester:	Name of the Faculty:
Electrical Engineering	5 th	Ajit Kumar Bisoi, Lecturer
	Winter/2022	
Subject:	No. of	Start Date: 15/09/2022
Digital Electronics & Microprocessor	Days/Week:	End Date: 21/01/2023

Week	Class Day	Theory Topics
1st	1st	Number System-Binary, Octal, Decimal, Hexadecimal
	2nd	Conversion from one system to another number system
	3rd	Arithmetic Operation-Addition, Subtraction, Multiplication, Division
	4th	1's & 2's complement of Binary numbers& Subtraction using complements method
	5th	Digital Code & its application & distinguish between weighted & non-weight Code
2nd	1st	Binary codes, excess-3 and Gray codes
	2nd	Logic gates: AND,OR,NOT,NAND,NOR, Exclusive-OR, Exclusive-NORSymbol, Function, expression, truth table & timing diagram
	3rd	Universal Gates& its Realisation
	4th	Boolean algebra, Boolean expressions, Demorgan's Theorems

	5th	Boolean algebra, Boolean expressions, Demorgan's
		Theorems
Srd	1 st	Represent Logic Expression: SOP & POS forms Represent Logic Expression: SOP & POS forms
	2nd	Karnaugh map (3 & 4 Variables)&Minimization of
		logical expressions
	3rd	Karnaugh map (3 & 4 Variables)&Minimization of
		logical expressions, don't care conditions
	4th	Review, Practice, doubt clearing
	5th	Quiz test
4th	1st	Half adder, Half Subtractor
	2nd	Full adder
	3rd	Serial and Parallel Binary 4 bit adder
	4th	Full Subtractor
	5th	Multiplexer (4:1)
5th	1st	De- multiplexer (1:4)
	2nd	Decoder, Encoder
	3rd	Digital comparator
	4th	Seven segment Decoder
	5th	Revision
	1st	Quiz test
Out	2nd	Principle of flip-flops operation, its Types
	3rd	SR Flip Flop using NAND, NOR Latch (un clocked)
	4th	Clocked SR, DFF
	5th	JK,T FF
741-	1st	JK Master Slave flip-flops-Symbol, logic Circuit, truth
7th	130	table and applications
	2nd	Concept of Racing and how it can be avoided
38	3rd	Review, Doubt clearing
		Shift Registers its need
	4th	Serial in Serial –out Shift Register working Principle
	5th	
8th	1st	Serial- in Parallel-out Shift Register working principle
100	2nd	Parallel in serial out and Parallel in parallel out

	3rd	Universal shift registers-Applications	
	4th	Types of Counter & applications	
	5th	Binary counter, Asynchronous ripple counter	
th	1st	Decade counter	
	2nd	Synchronous counter	
	3rd	Synchronous counter	
	4th	Ring Counter	
	5th	Introduction to microprocessor, microcomputer	
10th	1st	Architecture of Intel 8085A description of each block	
	2nd	Pin diagram and description	
	3rd	Quiz Test	
	4th	Stack	
	5th	Interrupts	
11th	1st	Opcode & operand	
	2nd	Difference between one byte, two byte three byte	
		instruction with example	
	3rd	Instruction set of 8085 microprocessor	
	4th	Addressing mode	
	5th	Fetch cycle, machine cycles, instruction cycle, T-state	
12th	1st	Timing diagram of memory read, write, I/O read write	
	2nd	Timing diagram of 8085 instruction	
	3rd	Counter and time delay	
	4th	Simple Assembly language programming	
12	5th	Doubt clearing, Practice	
13th	1st	Quiz Test	
	2nd	Basic interfacing concepts	
	3rd	Memory mapping	
	4th	I/O mapping	
	5th	Functional block diagram of Intel 8255	
14th	1st	Revision	
	2nd	Description of each block of Intel 8255	
	3rd	Application using 8255	

4th	Seven segment display
5th	Square wave generator
1st	Revision and assignment Q/A discussion
3rd	Practice
4th	Traffic light controller
5th	Important question answer discussion
	5th 1st 3rd 4th

Signature of the faculty

Signature of the Principal